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Abstract. We present results for the isovector axial, induced pseudoscalar, electric, and

magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor

HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12,

0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is

controlled by using four-state fits to two-point correlators and by comparing two- versus

three-states in three-point correlators. The Q2 behavior is analyzed using the model inde-

pendent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic

moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.

1 Introduction

To extract the form factors from the three-point correlators, we consider the spectral decomposition

including contributions from three states, the ground state |0〉 and two excited states |1〉, |2〉:
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In our lattice calculation, p = 0 and the three states have mass Mi. The primed states | j′〉 have

momentum p
′ and energy E j. The desired matrix element is 〈0′|OΓ|0〉, which can be decomposed

into nucleon form factors, associated with all possible Lorentz covariant structures for a given current

insertion OΓ. To estimate convergence of the truncated spectral decomposition, we compare results of

2-state fits (neglecting contributions of the second excited state) with a 3∗-state fit in which the poorly

determined matrix element 〈2′|OΓ|2〉 is set to zero. Within the single elimination jackknife process, we

use results of 4-state fits to the two-point correlator to obtain the energy Ei, mass Mi and amplitudes

A
(′)

i
that are inputs in the fits to the three-point correlators using Eq. (1).
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Table 1: Fit parameters. The 2nd column gives the fit ranges used for nucleon two-point correlators.

The 3rd column gives the values of source-sink separations τ simulated and used in the fits, and the

4th column gives the number of timeslices, tskip, adjacent to the source and the sink, skipped in the

fits to three-point correlators to control excited-state contamination. The 5th column gives the value

of t̄0 chosen in the z−expansion fit at which z(Q2
= t̄0) = 0. The fit ranges for ensembles a09m310

and a09m220 are different from those in [1], since these ensembles have been updated with higher

statistics AMA bias corrected data, and include data with τ = 16 and momentum insertion up to

n2
= 10. The calculation of the Q2

� 0 data for the a09m130 ensemble has been analyized using only

the low precision data.

ensemble [tmin, tmax] {τ} tskip t̄0 L3 × T Mval
π L Nconf NHP

meas NLP
meas

a12m310 [2, 15] {8,10,12} 2 0.40 243 × 64 4.55 1013 8104 64,832

a12m220L [2, 15] {8,10,12,14} 2 0.20 403 × 64 5.49 1010 8080 68,680

a09m310 [2, 18] {10,12,14,16} 3 0.50 323 × 96 4.51 2264 9056 114,896

a09m220 [3, 20] {10,12,14,16} 3 0.40 483 × 96 4.79 964 3856 123,392

a09m130 [4, 20] {10,12,14} 3 0.12 643 × 96 3.90 883 7064 56,512

a06m310 [7, 30] {16,20,22,24} 7 0.40 483 × 144 4.52 1000 8000 64,000

a06m220 [7, 30] {16,20,22,24} 7 0.20 643 × 144 4.41 650 2600 41,600

a06m135 [6, 30] {16,18,20,22} 6 0.12 963 × 192 3.74 322 1288 20,608

2 Axial Form Factor

Nucleon matrix elements with the insertion of the isovector axial vector current can be decomposed

into the axial form factor GA and the induced pseudoscalar form factor G̃P:

〈

N(pf )|Aµ(q)|N(pi)
〉

= uN(pf )

(

GA(Q2)γµ + qµ
G̃P(Q2)

2MN

)

γ5uN(pi), (2)

where Q2 ≡ p
2 − (E − m)2

= −q2 and q = p f − pi. Note that pi = 0 in our lattice calculation.

Results for the axial form factor GA(Q2), normalized by the corresponding gA ≡ GA(0) for each of the

8 ensembles, are shown in Fig. 1. A notable change on going from 2-state fits presented in Ref. [1] to

3∗-state fits is the much better agreement in the data from the two physical mass ensembles and in the

final estimates given in Table 5. For each ensemble, the axial charge radius 〈r2
A
〉 is obtained from the

analytic derivative of the dipole and the z-expansion fits evaluated at Q2
= 0 as explained in Ref. [1].

The chiral, continuum, and finite volume (FV) extrapolation to Mπ → 135 MeV, a → 0 and

MπL→ ∞ is performed using only the leading order correction terms:

〈r2
A〉(a,Mπ, L) = cA

1 + cA
2 a + cA

3 M2
π + cA

4 M2
π exp(−MπL) (3)

In all the results presented in this talk, the FV term is small and c
A,S ,T

4
are not well determined.

Nevertheless, results with and without the FV term are consistent as shown in Tables 2, 3 and 4

where we give results with and without the FV term, compare the 2- and 3∗-state fits used to control

excited-state contamination, and the z−expansion versus the dipole fits for the Q2 behavior. A detailed

description of our analysis methodology is presented in Ref. [1] for the axial form factor.

For our final estimates summarized in Table 5, we separately quote the weighted average of the

two z-expansion fits and the dipole results given in Table 2 including the finite volume term. We also

quoteM2
A
≡ 12/r2

A
for both the dipole and the z−expansion data.
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These results are consistent with our previously reported values in Ref. [1]. Our new central

values from the 3∗-state fit agree with the MiniBooNE results MA = 1.35(17) GeV [2], but differ

by about 1σ from the 2-state fit results and by about 2.5σ from the phenomenological estimate

rA = 0.666(17) fm [3] obtained using the neutrino scattering data. A recent reanalysis of the deuterium

data based on the z-expansion assesses an order of magnitude larger error, rA = 0.68(16) fm [4], in

which case the disagreement with our 3∗-state result reduces to about 1σ.
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Figure 1: Axial form factor data from the 2- and 3∗-state fits to the three-point functions. The thick

red line within the pink band shows the dipole result given in Table 5, and the thin straight red line

is the slope, −r2
A
/6, at zero momentum transfer. Both the z−expansion and the dipole estimates differ

from the dipole fit with the phenominological estimate,MA = 1.026(21) GeV given in Ref. [5], that

represents the world average from the neutrino scattering data. Note also the change in the slope,

−r2
A
/6, between the 2- and 3∗-state fits. This trend is the same for the z-expansion estimates.

Table 2: Estimates for the mean square axial charge radius 〈r2
A
〉. The first column lists the terms kept in

the continuum chiral extrapolation fit using Eq. (3). Data from each of the eight ensembles described

in Table 1 are analyzed using both the 2-state and 3∗-state truncation of the spectral decomposition

of the three-point correlator given in Eq. (1), followed by dipole and z-expansion (including sumrule

constraints) fits described in Ref. [1].

2-state 3∗-state

dipole z2+4 z3+4 dipole z2+4 z3+4

a, M2
π, FV 0.208(19) 0.180(37) 0.223(60) 0.260(25) 0.245(52) 0.272(89)

a, M2
π 0.214(15) 0.166(29) 0.172(48) 0.248(20) 0.219(46) 0.219(79)

3 Pseudoscalar Form Factor

Data for the normalized induced pseudoscalar form factor, (mµ/2MN)G̃P/gA with mµ the muon mass,

are summarized in Fig. 2. They show essentially no dependence on Mπ or a or MπL. In Ref. [1], we

highlighted a problem in the extraction of G̃P: the three form factors GA, G̃P, and the pseudoscalar

form factor GP do not satisfy the axial Ward identity. As a result, the pion-pole dominance ansatz used

to extrapolate the lattice data for G̃P at fixed Q2 in M2
π, to obtain say g∗

P
≡ mµ/2MN×G̃P(Q2

= 0.88m2
µ),

was shown to also fail. In fact, our results for g∗
P

from the two physical pion mass ensembles are

about half the muon capture experiment result [1]. A similar underestimate also occurs for the

3
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pion-nucleon coupling gπNN. In Ref. [1], we further show that O(a) improvement of the axial current

operator does not significantly reduce the problem. Updated data presented here in Fig. 2, show only

a small increase in the values of the form factor at low Q2 on going from the 2-state to the 3∗-state

analysis. Thus, the violation of PCAC in the extraction of G̃P remains an unresolved problem.
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Figure 2: Data for the normalized pseudoscalar form factor (mµ/2MN)G̃P/gA for the 8 ensembles.

4 The Electric Form Factor

Nucleon matrix elements with vector current insertion can be decomposed into the Dirac and Pauli

form factors F1 and F2 as:

〈

N(pf )|Vµ(q)|N(pi)
〉

= uN(pf )

(

F1(Q2)γµ + σµν
F2(Q2)

2MN

)

γ5uN(pi). (4)

Here, we present results for the related Sachs, the electric and the magnetic, form factors GE and GM:

GE(Q2) = F1(Q2) −
Q2

4M2
N

F2(Q2) , (5)

GM(Q2) = F1(Q2) + F2(Q2) . (6)

The data for GE(Q2) is summarized in Fig. 3, and we find that the 3∗-state fits are closer to the phe-

nomenological curve compared to the 2-state fits. The charge radii 〈r2
E
〉 and 〈r2

M
〉 on each ensemble

are then extracted following the same procedure as for 〈r2
A
〉. From these, the continuum chiral extrap-

olation for the electric charge radius is performed using the following ansatz:

〈r2
E〉(a,Mπ, L) = cE

1 + cE
2 a + cE

3 ln(M2
π/λ

2) + cE
4 ln(M2

π/λ
2) exp(−MπL) , (7)

where the mass scale λ is chosen to be Mρ = 775 MeV and the form of the chiral and FV corrections

are taken from Refs. [3, 6]: Using Eq. (7), the results for the different fit ansatz are summarized in

Table 3. For the final estimates given in Table 5, we take the weighted average of the two z-expansion

fits given in Table 3. The z-expansion and the dipole fit results with the 3∗-state analysis overlap.

All four estimates are smaller than the CODATA-2014 world average, rE = 0.875(6) fm [7], from the

electron experiments and the more accurate value derived from the Lamb shift in muonic hydrogen,

rE = 0.8409(4) fm [8]; the z-expansion result with 3∗-state analysis is consistent with the experiments

because of the error estimate is larger.
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Figure 3: The 8 ensemble data for the normalized electric form factor GE/gV . The overlaid red band

shows our dipole result given in Table 5. The black dashed line shows the phenomenological value

ME = 0.780(5) in both panels. The corresponding straight lines give their slopes, −r2
E
/6, at Q2

= 0.

Experimental data paramterized by the Kelly curve is shown by the purple dotted line.

Table 3: Mean square electric charge radius 〈r2
E
〉. The first column shows the terms included in the

chiral continuum extrapolation defined in Eq. (3). The rest is the same as in Table 2.

2-state 3∗-state

dipole z2+4 z3+4 dipole z2+4 z3+4

a, ln M2
π, FV 0.473(32) 0.475(83) 0.529(160) 0.619(49) 0.638(124) 0.801(174)

a, ln M2
π 0.531(21) 0.528(54) 0.730(097) 0.580(30) 0.561(071) 0.738(105)

5 The Magnetic Form Factor

The z−expansion fits to GM(Q2) are much less stable since the point F2(Q2
= 0) cannot be extracted

from Eq. (4); it is obtained from the fit in Q2. As a result, the z−expansion estimates in Table 4 are

only with terms up to z3. Results of fits with sumrules are even less stable and not presented here.

Using the data from the 8 ensembles, we perform the continuum-chiral extrapolations for the magnetic

charge radius rM and the magnetic moment µ using the ansatz:

〈r2
M〉(a,Mπ, L) = cM

1 + cM
2 a + cM

3 /Mπ + cM
4 /Mπ exp(−MπL) , (8)

µ(a,Mπ, L) = c
µ

1
+ c
µ

2
a + c

µ

3
Mπ + c

µ

4
Mπ

(

1 −
2

MπL

)

exp(−MπL) . (9)

The form of the chiral and FV correction terms in 〈r2
M
〉 are taken from Ref. [3]. The FV term in µ is

taken from Ref. [9]. The NLO chiral correction in µ has a known coefficient, (g2
A

MN)/(4πF2
π)Mπ(1 +

(3Mπ)/(MN) ln(M2
π/λ

2)) [10], however, there is an additional chiral log at the same order, i.e., pro-

portional to M2
π, that involves unknown LEC. To include both chiral logs, an additional parameter is

needed. Since we have data over a limited range of M2
π and with essentially three values of M2

π, we

neglect the chiral log corrections. For the same reason, we also leave c
µ

3
a free parameter rather than

take the form predicted by χPT. The results of the fits, with and without the respective FV correction

term, are summarized in Table 4.

5
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Figure 4: Data for the normalized magnetic form factor GM/gV for the 8 ensembles. The yellow

dashed line is the dipole fit data extrapolated using only a fit in m2
π. The rest is the same as in Fig. 3.

Table 4: Results of fits for the mean square magnetic charge radius 〈r2
M
〉 using Eq. 8 (upper half), and

for µ using Eq. 9 (lower half). The second column shows the terms included in the chiral continuum

extrapolation. The rest is the same as in Table 2.

2-state 3∗-state

dipole z2 z3 dipole z2 z3

〈r2
M
〉

a, M−1
π , FV 0.517(46) 0.716(96) 0.994(405) 0.587(68) 0.666(136) 0.878(649)

a, M−1
π 0.468(26) 0.619(60) 0.483(278) 0.477(39) 0.591(093) 0.580(439)

µ
a, Mπ, FV 3.52(15) 3.39(19) 3.72(42) 3.72(23) 3.39(30) 3.92(70)

a, Mπ 3.48(10) 3.41(13) 3.34(30) 3.64(14) 3.49(20) 3.63(46)

Our final results collected in Table 5, are obtained by fitting 〈r2
M
〉 and µ using Eq. (8) and Eq. (9),

respectively, and keeping all four terms. For the z−expansion, we take a weighted average of the z2

and z3 truncation results. Estimates from the 2− and 3∗-state fits are consistent for both the dipole and

the z-expansion ansatz, but with larger errors than in 〈r2
E
〉. The z-expansion gives larger central values

and errors compared to the dipole fits. The dipole estimates are smaller than the experimental value

rM = 0.86(3) fm [7] obtained from electron scattering experiments but the z-expansion estimates are

consistent with the experimental value. Nevertheless, all four estimates of µ are 3/4 of the precisely

known value µ = 1 + κp − κn = 4.7058 with the anomalous magnetic moments of proton κp = 1.7928

and of the neutron κn = −1.9130 [11].

In Fig. 5, we plot the data and compare the chiral continuum extrapolation of 〈r2
M
〉 and µ for the z2

fit to the data from the 3∗-state analysis for two cases. The pink band shows the 4-parameter fit using

Eqs. (8) and (9) projected on to the M2
π axis, i.e., fit to the data extrapolated to their continuum values in

the other two variables, a and MπL. The grey band shows the fit only versus M2
π, i.e., neglecting lattice

spacing and volume dependence by setting cM
2
= cM

4
= 0. The plots show that for a given pion mass,

both 〈r2
M
〉 and µ decrease as the lattice spacing decreases. The fit keeping all four terms in Eqs. (8)

and (9) is sensitive to this trend and thus gives smaller estimates. Ignoring the a dependence, the fit

versus just M2
π is controlled by the three 0.09 fm ensemble points as they have the smallest errors. It

6
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gives 〈r2
M
〉 = 0.74(7), which fortuitously agrees with the experimental value 〈r2

M
〉 = 0.74(5). However,

the corresponding estimate of µ = 4.11(9) is still lower than the experimental value µ = 4.7058.

Overall, it is the 0.06 fm data that controls the large negative slope in the lattice spacing depen-

dence and leads to an underestimate of both 〈r2
M
〉 and µ. Since the statistical errors in the data from

these three 0.06 fm ensembles are the largest, reducing them will be the focus of future work.
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Figure 5: Chiral continuum extrapolation of 〈r2
A
〉, 〈r2

E
〉, 〈r2

M
〉, and µ. The eight data points are obtained

from the 3∗-state fit for all four quantities, followed by z2+4 fit for GA(Q2) and GE(Q2), and z2 fit for

〈r2
M
〉 and µ. The black solid line within the red error band shows the extrapolation using Eq. (3) for

〈r2
A
〉, Eq. (7) for 〈r2

E
〉, Eq. (8) for 〈r2

M
〉 and Eq. (9) for µ. These 4-parameter fits (shown versus only

M2
π
) are compared with a fit versus only M2

π
(setting cX

2,4
= 0 where (X = A, E,M, µ)) shown by the

black dashed line within the gray error band. The red and black crosses at Mπ = 135 MeV are the

final estimates from these 4 versus 2 parameter fits.

Table 5: Final results for the isovector charge radii rA, rE and rM in unit of fm and the corresponding

massesMA,ME andMM in unit of GeV. The magnetic moment µp−n ≡ 1 + κp − κn. The results are

presented separately for the 2- and 3∗-state fits used to control the excited-state contamination and the

dipole and the z−expansion fits to capture the Q2 behavior.

Q2 3-pt. rA MA rE ME rM MM µp−n

z-exp.
2 0.44(5) 1.56(18) 0.70(7) 0.98(10) 0.86(07) 0.80(06) 3.45(23)

3∗ 0.50(6) 1.36(17) 0.83(9) 0.82(08) 0.82(10) 0.83(10) 3.47(36)

dipole
2 0.46(2) 1.50(07) 0.69(2) 0.99(03) 0.72(03) 0.95(04) 3.52(15)

3∗ 0.51(2) 1.34(06) 0.79(3) 0.87(03) 0.77(04) 0.89(05) 3.72(23)
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6 Summary

We have improved the control over excited-state contamination in the form factor analysis by includ-

ing the second excite state in the fits. The results for rA and rE from the 3∗-state fits are closer to the

phenomenological value for both the z-expansion and the dipole analysis. The 3∗-state fits are about

1σ (3σ) larger for the z-expansion (dipole) fit compared to the corresponding 2-state fit analysis.

The error from the dipole fits is typically a factor of 2–3 smaller than that from the z-expansion

fits as shown in Table 5. Given the change in the value between 2- and 3∗-state fits, we consider the

error estimates using the z-expansion more realistic.

The z-expansion with 3∗-state fits give an rA = 0.50(6) fm that is smaller than the phenomenologi-

cal estimate rA = 0.68(16) fm [4]. The results for rE = 0.83(9) fm and rM = 0.82(10) fm are consistent

with phenomenological values rE = 0.8409(4) fm and rM = 0.86(3) fm. The outlier is our estimate of

the magnetic moment µ which is about 3/4 of the precisely known experimental value µ = 4.7058.

Our plan for the future is to increase the statistics on the two physical pion mass ensembles and

understand why the data for the three form factors GA, G̃P and GP do not satisfy the axial Ward

identity.
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